- D) T=110-115° C, P₂O₅=39-45%;
- E) T=100-125° C, P₂O₅=55-58%.
- 29. The hemihydrate method for the production of extraction phosphoric acid corresponds to the following process conditions:
 - A) T = 85-100 °C, $P_2O_5 = 30-48\%$;
 - B) $T = 65-85^{\circ} \text{ C}$, $P_2O_5 = 28-32\%$;
 - C) $T = 95-110^{\circ} C$, $P_2O_5 = 48-50\%$;
 - D) T = 110-115° C, $P_2O_5 = 49-55\%$;
 - E) $T = 115-135^{\circ} C$, $P_2O_5 = 55-58\%$.
- 30. The technological mode of the anhydrite method for the production of extraction phosphoric acid is as follows:
 - A) T = 95-110 °C, $P_2O_5 = 48-50\%$;
 - B) T = 85-100 °C, P_2O_5 = 30-48%;
 - C) T = 65-85 °C, $P_2O_5 = 28-32\%$;
 - D) T = 110-115 °C, P_2O_5 = 49-55%;
 - E) T = 115-135 °C, P_2O_5 = 55-58%.
- 31. The disadvantages of the anhydrite method for producing extraction phosphoric acid are:
 - A) the formation of large crystals of anhydrite;
 - B) the possibility of corrosion;
 - C) fewer washes of the precipitate;
 - D) low content of P_2O_5 in the product;
 - E) low temperature neutralization process.
 - 32. Waste dihydrate method for the production of extraction phosphoric acid:
 - A) ferrophosphorus;
 - B) phosphohemihydrate;
 - C) phosphogypsum;
 - D) phosphoanhydrite;
 - E) phospholeum.
 - 33. Waste hemihydrate method for the production of extraction phosphoric acid:
 - A) phosphohemihydrate;
 - B) phosphogypsum;
 - C) phosphoanhydrite;
 - D) ferrophosphorus;
 - E) phospholeum.
- 34. The waste production of wet-process phosphoric acid phosphogypsum is used with the aim:
 - A) production of Portland cement, construction gypsum, sulfuric acid, ammonium sulfate;
 - B) production of sodium tripolyphosphate and sulfuric acid;
 - C) production of sulphides and sulphites;
 - D) sulphate and sulphuric acid production;
 - E) production of mineral fertilizers, herbicides, insecticides.
 - 35. The process of utilization of phosphogypsum proceeds by reaction:
 - A) $CaS + 3CaSO_4 = 4CaO + 4SO_2$;
 - B) $CaSO_4 + C = CaS + 2CO_2$;